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Abstract We discuss the chemical synthesis of topological links, in particular higher
order links which have the Brunnian property (namely that removal of any one com-
ponent unlinks the entire system). Furthermore, we suggest how to obtain both two
dimensional and three dimensional objects (surfaces and solids, respectively) which
also have this Brunnian property.
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1 Introduction

In this paper we will give a detailed discussion of some of the ideas developed by
the first two authors in [1], which again was based on [2–4]. We will here single out
specific links which seem suitable for synthesis and present their topological structure
in a way that may be useful in planning and performing the process of synthesis.
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2 Topological structures

Links are less studied than knots and not classified to the same extent. Therefore it
is of interest to single out specific families which may be natural from a topological
point of view. Lots of choices exist, but in [2] two general and interesting families
were introduced, examples of which can be seen in Figs. 1 and 2.

2.1 The generating links

The Hopf family is based on the Hopf link, Fig. 3, from which one forms chains and
then loops, as in Fig. 4.

Before discussing the Brunnian family we will give a definition of a characterising
property of certain links, given in [2].

Definition A B(n, k) link is a link in three dimensional space of n circular components
with the property that any subset of k or fewer components are unlinked.

Fig. 1 The Hopf family
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Fig. 2 The Brunnian family

Fig. 3 The Hopf link
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Fig. 4 Hopf links to Hopf chains

For clarity, let us state that for simplicity we consider our links to be unoriented.

Examples 1. Links of type B(n, n − 1) are classically known as Brunnian links as
any proper subset of the components is unlinked but the link as a whole may be
linked.

2. At the other end of the scale, any non-trivial link with n components is of type
B(n, 1).

3. We will refer to the next level up in the scale, namely B(n, 2), as Borromean links.
The Borromean rings are, of course, the primary example of this.

2.2 Higher order links

The idea of higher order links is straightforward. It consists in replacing the compo-
nents of one link by a second link. These links are similar to satellite links for knots,
in that they are componentwise satellites. For this work, the components of our links
should be considered embedded in tori in such a way that they intersect any meridinal
disc (often called framed). The two families identified in [2] are built in this way from
particular sets of links.

In the Hopf family, the sets of links consist of the Hopf rings. A Hopf ring of length
k consists of k components together with a cyclic order such that each component is
Hopf linked to its neighbours, as in Fig. 5. In the Brunnian family, the linking method is
the Brunnian linkage which is derived from a deformed version of the Borromean rings
and is the core component of the so-called Rubberband links (see [5]). An example of a
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Fig. 5 A Hopf ring

Brunnian ring with four components is in Fig. 6. In Fig. 7 we show a three component
Brunnian ring next to the Borromean rings which are related but not of this family
(see [2] for commentary on the difference).

These two linkages, the Hopf and Brunnian, can also be used to form chains. In
the Brunnian case, the chain needs additional components at the ends to prevent it
unravelling. These are not of particular interest for higher order structures as they are
not suitable for the iterative process.

Borromean rings also play a role in this article because they have been successfully
synthesised, [6–8].

As pointed out in [1] we are especially interested in the synthesis of higher order
links, and there are many alternatives. We propose to start with examples from the
Hopf and Brunnian families.

3 Proposals

3.1 The Hopf-family

First make a chain of Hopf links of some length n, for example n = 3, and loop it up;
see Fig. 8. Then take 3 such rings and form a second order Hopf ring, 2H(3, 3). Here
we use the terminology of [2] wherein the outer number indicates the number of levels,
the letter denotes the linking type (H for Hopf or B for Brunnian) and the numbers in
the parentheses indicate the number of rings in each level in turn. This particular link
is the outer link in Fig. 1. If this works well one may continue with 3H(3, 3, 3). When
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Fig. 6 A Brunnian ring

Fig. 7 The Borromean rings and the Brunnian ring of length 3

done, one may consider differences in chemical and physical properties, for example
optical.

3.2 The Brunnian-family

The first report of Borromean ring synthesis used DNA as the component material,
[6], but Brunnian rings have not so far been synthesised.

One should start with the synthesis of Brunnian chains, see Fig. 9, for exam-
ple n = 3, and loop them up. This gives 1B(3) in our terminology. Take these
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Fig. 8 First order Hopf ring of length 3

Fig. 9 Brunnian chain

1B(3)-rings and form a 2B(3, 3)-ring as shown in the outer link in Fig. 2. Of course,
one may also strive for 3B(3, 3, 3).

In the synthesising process one may have to consider more complicated versions
of the chains with more crossings and twists, but still having the Brunnian property.

Finally, one should study material and topological properties, and look into possible
relations. The topology is highly non-trivial. New physical and chemical properties
would be of great interest like conductivity and optical properties. Conducting poly-
mers may be used. The new materials constructed by using DNA and its derivatives
may also be used as scaffolds for the construction of similar geometries of other
polymers. Here the Brunnian property may come in when getting rid of the scaffold.

There are numerous properties that are likely to be a function of the topology of
the molecules (e.g., H. K. Moffatt [9]) such as induced currents or magnetic fields.
This is largely an unexplored area on the molecular scale. The work of Canary and
Seeman [10] suggests ways to approach these phenomena on an experimental basis.
Those authors have been approaching the control of polymer topology by means of
ladder polymers based on DNA structures. They have focussed primarily on nylon and
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Fig. 10 Schematic Brunnian chain with eight components

Fig. 11 Schematic Brunnian chain with shifted components

polyethylene oxide, but conducting polymers are also likely to be amenable to their
approach.

3.3 Brunnian surfaces

Consideration of the above families of links leads to some other structures that may
be suitable for synthesis. These other structures that we would like to propose are not
“higher order” links, but “higher dimensional” and were suggested by considering the
Brunnian family.

Consider the (interior of the) Brunnian chain in Fig. 9. This particular rendering
makes obvious how to extend the chain to an arbitrary number of components, and how
to close it up into a ring as described in Sect. 3.2. We can render it more schematically
by using straight lines in the components as in Fig. 10.

The basic shape in Fig. 10 is of a square. This redrawing brings to attention the
“non-end” corners of the square. We can view these as the “opposite” corners of the
corners that correspond to the doubling back loops. This suggests that we can consider
moving the components providing that the basic rule is upheld: an “open end” must
link round a “non-end”. In particular, we can consider shifting alternate components
vertically as in Fig. 11.

This now has a suggestion of 2-dimensionality to it. We can easily envision adding
more vertical layers to produce a carpet effect as in Fig. 12.

As drawn, this is unlinked. We need a way to close off the link whilst keeping the
exhibited structure. To do this, we impose the obvious rule. To state this rule, let us
label the parts of a component: we have “open ends” (the circular parts) and “interior
bends”. The rule then is that every open end must go around an interior bend.

Closing the top and bottom edges of the segment in Fig. 12 is simple enough: we
simply deform the edge components as in Fig. 13.
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Fig. 12 Segment of a Brunnian carpet

The simplest method of closing the right and left edges is to realise the title of this
section and make a surface. That is, we bring round the right edge and connect it to
the left. This makes a tube.

We could have done this for the upper and lower edges as well to make a torus,
however in so doing we would have had to make adjustments to take into account the
curvature of a torus in 3-space. This echoes the standard construction of a torus from
a square as shown in Fig. 14. Going further, we could build higher genus surfaces, or
other surfaces such as a Möbius band or Klein bottle, using flexible links.

Rather than describe those adjustments for the case of a torus (which is somewhat
tricky to draw), we prefer to describe them by showing a way to make a flat surface of
finite extent that is closed. This we call the Brunnian carpet and it is shown in Fig. 15.

Figure 16 illustrates how Brunnian carpets can be fused together to create a more
complex 3D topology which retains the Brunnian property, namely a Brunnian solid.
Carpets are stacked and then, following [11], at some points where two strands are
juxtaposed then a fused species is created. Application of this notion here entails fusing
double strands, rather than single strands, but the result is the same. Care must be taken
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Fig. 13 Segment of a Brunnian carpet with closed running edges

Fig. 14 Building a torus from a square

to ensure that the resulting structure still retains the Brunnian property. In Fig. 16 the
three layers are meant to form a stack of three carpets with certain components that
are vertically aligned fused together.

Let us isolate the components used so far. We have the basic chain component,
the left and right extensions, and the left and right corner pieces. These are shown in
Fig. 17.
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Fig. 15 A Brunnian carpet

Fig. 16 Layered carpets

There is another variant on these shapes which involves bending one or more of the
legs into a third dimension. With four of these based on the basic chain type it is possible
to make a cube as in Fig. 18 (with hopefully obvious condensation of complexity in
the diagram). Clearly, we can further extend this to construct very general wireframe
shapes where we build the shape out of zigzag wires subject to the constraint that the
end points of each wire must connect to an interior kink on some wire (possibly the
same wire). We could also impose the constraint that every wire must have a kink, and
that every kink must be connected to the end point of some wire.
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Fig. 17 The Brunnian surface components

Fig. 18 Brunnian cube of four
components

However, at this stage we are introducing these shapes for possible synthesis and
so introducing such complexity is further than we wish to go. Rather, let us focus
on the key property that we want these shapes to have: that upon removing a single
component the entire shape unlinks. For the Brunnian chain and ring this is evident
as removing one component completely frees the neighbouring components and so
the process continues until the entire structure is unlinked. For the surfaces this is no
longer the case. What happens is illustrated in Fig. 19 where we begin by removing
the upper-most light-green (online version) component (central along the top).

Removing this component releases the two components immediately below it.
These are not unlinked, but one end of each is released. Once a component has at
least one end released, the two components immediately below it also have an end
released. Therefore the process continues.

This releasing spreads out, and on its edge then the components only have one end
released and so are not unlinked. However, in the interior each component has both
ends released and therefore becomes unlinked.

In Fig. 19 then components are marked corresponding to which end is released
(starting with the removal of the initial component). The components marked with a
single line only have one end released, but components marked with a cross have both.

It is important to note that there is a direction to this unlinking. The components
above the original one are not affected by this process. Therefore for the entire structure
to be unlinked the region that is falling apart must loop round in some fashion to bring
all components under its sway. The tube described above accomplishes this in the
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Fig. 19 Segment of a Brunnian carpet with unlinkings marked

obvious way. The carpet in Fig. 15 does so as the direction of unravelling rotates
around the centre. However, an infinite carpet based on the layout in Fig. 12 would
not have this Brunnian property. It is also possible to construct the tube (and thus the
torus) in such a way that cutting one component does not fully unlink the structure.
This is achieved by introducing a sufficiently large shift in the pattern when the tube
is closed up so that the pattern spirals around the tube.

4 The design of double-stranded nucleic acid knots and links

A key feature of the systems that we have described here is that they can be reduced
to practice in real systems containing polymers, so that they do not exist merely in
the computer, or as pretty pictures. The possibility that polymers can form knots was
pointed out by Frisch and Wasserman 50 years ago [12]. Designed molecular knots in
polymers have been realized most successfully in DNA [13]. The reason for this is that
a crossing in a single-stranded knot is easily constructed from a half-turn of double
helical DNA [14], as illustrated in Fig. 20. The close relationship between knots and
links [15] means that this notion can be extended readily to links, as well. Naturally
occurring DNA contains chiral backbone elements [D-sugars], so that the well-known
Watson–Crick B-DNA double helical structure [16] is right-handed, leading to negative
nodes. A novel left-handed conformation of DNA, known as Z-DNA [17] leads to
positive nodes, even though its sugars retain the same chirality. There is a limited

123



196 J Math Chem (2015) 53:183–199

Fig. 20 The relationship between nodes and antiparallel B-DNA illustrated on a trefoil knot. A trefoil
knot is drawn with negative nodes. The path is indicated by the arrows and the very thick curved lines
connecting them. The nodes formed by the individual arrows are drawn at right angles to each other. Each
pair of arrows forming a node defines a quadrilateral (a square in this figure), which is drawn in dotted
lines. Each square is divided by the arrows into four of domains, two between parallel arrows and two
between antiparallel arrows. The domains between antiparallel arrows contain lines that correspond to
base pairing between antiparallel DNA (or RNA) strands. Dotted double-arrowheaded helix axes are shown
perpendicular to these lines. The amount of DNA shown corresponds to about half a helical turn. It can be
seen that three helical segments of this length could assemble to form a trefoil knot. The DNA shown could
be in the form of a 3-arm DNA branched junction. A trefoil of the opposite sense would need to be made
from Z-DNA, in order to generate positive nodes

set of sequences that are readily converted from B-DNA to Z-DNA. Nevertheless, the
combination of B-DNA and Z-DNA components led to the construction of Borromean
rings from conventional DNA molecules in 1997 [6].

Two recent developments have in principle enabled the extension of this sin-
glestranded strategy to double stranded DNA. First, synthetic DNA components with
chiralities opposite to those of natural DNA, i. e. components containing L-sugars, have
become commercially available; consequently it has been simple to build a Solomon’s
knot and to prototype molecular weaving without the need to resort to the use of Z-
DNA [18]. Secondly, a new four-stranded DNA motif has been discovered, known
as PX-DNA [19]. It is shown in Fig. 21 to consist of two DNA duplexes that appear
to wrap around each other. In fact, closer inspection shows that the duplexes actually
exchange strands every other double-helical halfturn. Nevertheless, PX-DNA appears
to provide a means for producing the same crossings in double helical DNA that double
helices provide for single-stranded DNA. Note that the pitch of PX-DNA is roughly
twice that of conventional DNA. The importance of the availability of DNA with the
opposite chirality (containing L-sugars) is that no four-stranded equivalent of Z-DNA
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Fig. 21 PX DNA. PX-DNA is
drawn with strands of two
colors, red and dark blue. The
four strands form a structure
with a central dyad axis
(indicated by green arrows), and
consisting of two double helical
domains that are linked every
half-turn. The double helical
domains are indicated by small
black arrows above and below
them. Half-turns near the dyad
axis corresponding to minor
(narrow) groove spacings are
indicated by ‘N’ and half-turns
corresponding to major (wide)
groove spacings are indicated by
‘W’. The helical pitch consists of
four of these half-turns. Each
duplex contains a repeat of a
red–red half turn above a
red–blue half turn, below which
is a blue–blue half-turn, and then
a blue–red half turn, before the
sequence repeats. Note that the
central portion of the PX
structure consists of a
right-handed (negative) node. at
each point (Color figure online)
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is known, so it is not otherwise obvious how to generate positive nodes from PX-like
double crossings without using L-sugars.

In addition to synthetic issues that have impeded the application of DNA nanotech-
nology [20] to chemical topological construction in its most general senses, there
have also been analytical problems, arguably more severe. The three DNA knots that
have been most completely characterized have all been identified using biochemi-
cal techniques: Gel electrophoresis, ultracentrifugation and antibody binding [21,22].
Biochemical methods are adequate for differentiating the two enantiomers of trefoil
(31) knots from each other, from the circle (01) and from the Fig. 8 (41) knot. However,
biochemical techniques are insufficient for discriminating knot topoisomers (e. g., the
three 6-noded knots) unambiguously, or for establishing various failure products or
byproducts that may be encountered in the construction of complex links. Without
doubt, the best way to characterize synthetic topological targets is to look at them.

Recent advances suggest that it may now be practical to apply imaging approaches to
the characterization of topological targets. One of these is the advent of self-assembled
DNA crystals containing large guest cavities [23]. These scaffold arrays may be used
to organize guests for X-ray diffraction analysis [24], much as Fujita and his colleagues
have done with MOFs [25]. Crystallization of topological targets is particularly chancy,
unless they are as tight as possible, a tedious experimental determination [26]. The
targets made from double helical DNA are likely to be much tighter than those made
from single-strands. Current selfassembled crystals with cavities large enough to fit
the targets do not diffract adequately to resolve single-strands, but are likely to diffract
well enough to resolve double-stranded topological targets, where the ’strand’ is 20
across. A second development, not yet completely tested, is high resolution holography
using X-ray lasers [27,28]. One or the other of these techniques is likely soon to rescue
synthetic DNA topology from the basin in which it has largely been stuck since the
twentieth century.

5 Discussion

We have described exciting new topological systems above. One of their most exciting
features is that it appears that they can be reduced to molecular reality. Small molecule
knots and Borromean rings constituted chemical holy grails for much of the second half
of the twentieth century, being synthesised only relatively recently [7,21]. By contrast,
DNA and DNA-based polymers present a simplified set of synthons that can lead to the
construction of complex topological targets [13], but on a somewhat larger size scale.
The key impediment to implementing this approach lies not in the synthesis, but in
the characterisation of the products. Nevertheless, the new developments noted above
offer reasons for optimism in our ability to characterise the topological structures of
these species within the coming decade.
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